Paradigm Shifts and Remaining Challenges Towards AGI

Jingfeng Yang Applied Scientist, Amazon

Remaining Challenges Towards AGI

- Multimodality and Embodied AI
 - Using intermediate abstractions for grounding.
 - Direct modeling: Inductive biases v.s. scaling of data and model size?
- Planning and Reasoning
 - Pre-LLM Era: Neural-symbolic models, multi-stage and modular models, etc.
 - LLM Era: Scaling + CoT, interface generation, what else?
- Human-centered AGI
 - Alignment
 - Al safety

Multimodality and Embodied Al

The Multimodality World

https://github.com/JingfengYang/Multi-modal-Deep-Learning

Two Approaches to Multimodality AGI

- End2end Modeling
 - Table-text encoding / decoding
 - Visual-language encoding / decoding
 - \circ Text-code encoding / decoding
- Using abstractions to bridge LLM and other modalities
 - Long-standing goal of Semantic Parsing
 - Transforming Natural Language to Formal Language (e.g. SQL to be executed on tables)
 - Using LLM to generate functions and APIs, and then execute them (e.g. Binder, ToolFormer, ChatGPT Plugins)
 - Robots relying on low-level policy or planner that can translate LM decisions into low-level actions (e.g. PaLM-E)

Intermediate abstractions as inductive biases still play an important role to bridge LLMs and some modalities

TABLEFORMER: Robust Transformer Modeling for Table-Text Encoding

Jingfeng Yang * Aditya Gupta[†] Shyam Upadhyay[†] Luheng He[†] Rahul Goel[†] Shachi Paul[†] *Georgia Institute of Technology [†]Google Assistant jingfengyangpku@gmail.com tableformer@google.com

ACL 2022 (Oral)

Table-Text Understanding

	-		
Character	First Appeared	Home World	Powers
Night Girl	2007	Kathoon	Super strength
Dragonwing	2010	Earth	Fire breath
Gates	2009	Vyrga	Teleporting
NO.	0000	A	Super
XS	2009	Aarok	speed
Harmonia	2011	Earth	Elemental
	Character Night Girl Dragonwing Gates XS Harmonia	CharacterFirst AppearedNight Girl2007Dragonwing2010Gates2009XS2009Harmonia2011	CharacterFirst AppearedHome WorldNight Girl2007KathoonDragonwing2010EarthGates2009VyrgaXS2009AarokHarmonia2011Earth

Legion of Super Heroes Post-Infinite Crisis

Sequential QA dataset (SQA) (lyyer et al., 2017)

Approaches to Table-Text Modeling Before LLM Era

- General Recipe
 - Step 1: Pretraining on text-table pairs
 - Pretraining on existing table-text corpus (Wikipedia, ToTTo etc.):
 - TaBERT (Yin et al., 2020)
 - TAPAS (Herzig et al., 2020)
 - StruG (Deng et al., 2021)
 - Data augmentation for pretraining
 - Intermediate pretraining (Eisenschlos et al., 2020)
 - GRAPPA (Yu et al., 2021)
 - TaPEx (Liu et al. 2022)
 - Step 2: Fine-tuning on specific dataset (e.g. SQA)

Problem 1: Non-Robust Modeling

Question: Of all song lengths, which one is the longest? Gold Answer: 5:02

Title	Producers	Length
Screwed Up	Mr. Lee	5:02
Smile	Sean T	4:32
Ghetto Queen	I.N.F.O. & NOVA	5:00

Problem 1: Non-Robust Modeling

Question: Of all song lengths, which one is the longest? Gold Answer: 5:02 TAPAS Predicted Answer: 5:00

Title	Producers	Length
Screwed Up	Mr. Lee	5:02
Smile	Sean T	4:32
Ghetto Queen	I.N.F.O. & NOVA	5:00

Problem 1: Non-Robust Modeling

Question: Of all song lengths, which one is the longest? Gold Answer: 5:02 TAPAS Predicted Answer: 5:00

TAPAS Predicted Answer After Perturbation: 5:02

Title	Producers	Length
Screwed Up	Mr. Lee	5:02
Smile	Sean T	4:32
Ghetto Queen	I.N.F.O. & NOVA	5:00

Title	Producers	Length
Smile	Sean T	4:32
Ghetto Queen	I.N.F.O. & NOVA	5:00
Screwed Up	Mr. Lee	5:02

Model is not robust to row/column order changes!

Accuracy drops from 66.8 to 60.5 on SQA dataset after perturbation.

Problem 2: Lack of Structural Biases

Question: Which nation received 2 silver medals? Gold Answer: Spain, Ukraine TAPAS Predicted Answer: Spain

Nation	Gold	Silver	Bronze
Great Britain	2	1	2
Spain	1	2	0
Norway	1	0	0
Ukraine	0	2	0

Problem 2: Lack of Structural Biases

Question: Which nation received 2 silver medals? Gold Answer: Spain, Ukraine TAPAS Predicted Answer: Spain

Nation	Gold	Silver	Bronze
Great Britain	2	1	2
Spain	1	2	0
Norway	1	0	0
Ukraine	0	2	0

Identify "Silver" column and "2" cells in this column

Problem 2: Lack of Structural Biases

Question: Which nation received 2 silver medals? Gold Answer: Spain, Ukraine TAPAS Predicted Answer: Spain

Nation	Gold	Silver	Bronze
Great Britain	2	1	2
Spain	1	2	0
Norway	1	0	0
Ukraine	0	2	0

Output contents of the same rows in "Nation" column

TableFormer Robust Table+Text Modeling

Question: Which nation received 2 silver medals?

Relative Attention:

Question: Which nation received 2 silver medals?

Silver

2

0

Nation

Spain

Norway

Relative Attention:

• Header to Sentence

Question: Which nation received 2 silver medals? **Relative Attention: Header to Sentence** Nation Silver **Cell to Sentence** Spain 2 Norway 0 Ukraine 2 which nation received Nation Silver 2 silver medals Spain 2 . . . received which nation silver medals Nation Silver Spain 2 2 Query Table

Question: Which nation received 2 silver medals?

Silver

2

0

2

Nation

Spain

Norway

Ukraine

Relative Attention:

- Header to Sentence
- Cell to Sentence
- Cell to Column Header

Question: Which nation received 2 silver medals?

Nation

Spain

Norway

Ukraine

Silver

2

0

2

Relative Attention:

- Header to Sentence
- Cell to Sentence
- Cell to Column Header
- Same Row

...

Transformer (Vaswani et al. 2017)

TableFormer (our work)

	Attention Bias Type
	header to sentence
	cell to sentence
	cell to its column header
	same row bias
	same column bias
•••	•••

TableFormer Input

Token

Row ID

Embeddings

2

2

TableFormer Input

Results on SQA (Table-based Sequential QA)

Results on SQA (Table-based Sequential QA)

Invariant to perturbations which affect previous approaches!

Results on SQA (Instance-level Robustness)

Variation Percentage (VP) after Perturbation

	TAPAS	TableFormer
Large	15.1%	0.0%
Large + Intermediate Pretraining	10.8%	0.0%

TableFormer prediction is strictly robust to perturbations in the instance level!

LLM Era: ChatGPT is also non-robust to row perturbations

Before Perturbation: 🔽

Can you understand the table: | Title | Producers | Length | |-------| | Screwed Up | Mr. Lee | 5:02 | | Smile | Sean T | 4:32 | | Ghetto Queen | I.N.F.O. & NOVA | 5:00 |

Yes, I can understand the table. It represents a list of three songs with their titles, producers, and length. Each row of the table contains information about a single song. The first column titled "Title" represents the name of the song. The second column titled "Producers" indicates the names of the individuals or groups who produced the song. The third column titled "Length" shows the duration of each song in minutes and seconds.

For example, the first row shows that the song titled "Screwed Up" was produced by Mr. Lee and has a length of 5 minutes and 2 seconds. The second row shows that the song titled "Smile" was produced by Sean T and has a length of 4 minutes and 32 seconds. The third row shows that the song titled "Ghetto Queen" was produced by I.N.F.O. & NOVA and has a length of 5 minutes.

Of all song lengths, which one is the longest?

[P]

Based on the given table, the longest song length is 5 minutes and 2 seconds, which belongs 🖞 🖓 to the song titled "Screwed Up" produced by Mr. Lee.

After Perturbation: X

Can you understand the table: | Title | Producers | Length | | ------ | ------ | | Smile | Sean T | 4:32 | | Ghetto Queen | I.N.F.O. & NOVA | 5:00 | | Screwed Up | Mr. Lee | 5:02 |

G

Yes, I can understand the table. It consists of three columns: "Title," "Producers," and "Length." Each row represents a different song and provides information about the title of the song, who produced it, and how long it is. The first song is called "Smile," produced by Sean T, and is 4 minutes and 32 seconds long. The second song is called "Ghetto Queen," produced by I.N.F.O. and NOVA, and is 5 minutes long. The third song is called "Screwed Up," produced by Mr. Lee, and is 5 minutes and 2 seconds long.

m sp

LLM Era: But GPT4 is robust to row perturbations

Before Perturbation: V

Can you understand the table: | Title | Producers | Length | |------| |Smile | Sean T | 4:32 | |Ghetto Queen | I.N.F.O. & NOVA | 5:00 | |Screwed Up | Mr. Lee | 5:02 |

Yes, I can understand the table. It contains information about three different items, likely songs, with their respective titles, producers, and lengths:

1. Title: Smile

Producers: Sean T

Length: 4 minutes and 32 seconds

- 2. Title: Ghetto Queen Producers: I.N.F.O. & NOVA Length: 5 minutes
- Title: Screwed Up Producers: Mr. Lee Length: 5 minutes and 2 seconds

Of all song lengths, which one is the longest?

After Perturbation: 🗸

- Can you understand the table: | Title | Producers | Length | |-------| | Screwed Up | Mr. Lee | 5:02 | | Smile | Sean T | 4:32 | | Ghetto Queen | I.N.F.O. & NOVA | 5:00 |
- Ś

Yes, I understand the table you provided. It is a simple table with three columns, each with a specific type of information: Title, Producers, and Length. The table lists three items (presumably songs) with their respective titles, the names of the producers who worked on them, and the length of each song. Here is the information from the table:

- 1. Title: Screwed Up Producers: Mr. Lee
 - Length: 5:02 (5 minutes and 2 seconds)
- 2. Title: Smile
 - Producers: Sean T

Length: 4:32 (4 minutes and 32 seconds)

 Title: Ghetto Queen Producers: I.N.F.O. & NOVA Length: 5:00 (5 minutes)

Of all song lengths, which one is the longest?

seconds.

ß

Of all the song lengths listed, "Screwed Up" is the longest, with a length of 5 minutes and 2 \Box

G Regenerate response

The longest song in the table is "Screwed Up," with a length of 5 minutes and 2 seconds (5:02).

LLM Era: Chain-of-thought Prompting for Table Reasoning

Туре	Model	Test EM
Train	Pasupat and Liang (2015)	37.1
Train	Zhang et al. (2017)	43.7
Train	Liang et al. (2018)	43.7
Train	Agarwal et al. (2019)	44.1
Train	Wang et al. (2019)	44.5
PT + FT	Herzig et al. (2020)	48.8
PT + FT	Yu et al. (2021)	52.7
1-shot	Direct Prediction	24.5
2-shot	Direct Prediction	26.8
1-shot	Chain of Thoughts	41.8
2-shot	Chain of Thoughts	42.4

Table 1: Experimental Results on WikiTableQuestions. PT means pre-training and FT means fine-tuning.

Chen W. Large Language Models are few (1)-shot Table Reasoners[J]. arXiv preprint arXiv:2210.06710, 2022.

LLM Era: Conclusion

Effect of architectural inductive biases is decreasing after scaling.

However, some inductive biases could encourage "early emergence or emergent abilities at a much smaller scale than purely scale-induced emergence."

In table-text understanding, "early emergence" are table reasoning and robustness.

Architectural Inductive biases -> prompting as inductive biases

https://www.yitay.net/blog/emergence-and-scaling

Planning and Reasoning

Planning and Reasoning Before LLM Era

Neural-symbolic models, multi-stage and modular models etc.

Figure 2: Our two-stage disfluency generation model with Planner and Generator (PG model).

Yang, Jingfeng, Diyi Yang, and Zhaoran Ma. "Planning and generating natural and diverse disfluent texts as augmentation for disfluency detection." *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. 2020.

Compositional Generalization

Reasoning requires planning, decomposing and composing knowledge. Compositional generalization is one type of reasoning

SEQZERO: Few-shot Compositional Semantic Parsing with Sequential Prompts and Zero-shot Models

Jingfeng Yang[†] Haoming Jiang[†] Qingyu Yin[†] Danqing Zhang[†] Bing Yin[†] Diyi Yang[‡] [†] Amazon

[‡] Georgia Institute of Technology

NAACL 2022 Findings

What is Compositional Generalization

Compositional generalization is the ability to generalize systematically to a new data distribution by combining known components

Andreas J. Good-enough compositional data augmentation. ACL 2020.

Compositional Generalization in Semantic Parsing

Semantic Parsing: Natural Language utterance -> Formal Language utterance (e.g. SQL Query)

Training Example 1: Natural: How many people live in Chicago ? Formal (SQL): SELECT city.population FROM city WHERE city.city_name = "Chicago"

Training Example 2: *Natural:* Give me the state that borders Utah . *Formal (SQL):* SELECT border_info.border FROM border_info WHERE boder_info.state_name = "Utah"

Test Example: Natural: How many people live in Utah ? Formal (FunQL): SELECT state.population FROM state WHERE state.state_name = "Utah"

Examples are from GeoQuery dataset.

Problem 1: Lengthy and Complex Output

The canonical utterance is lengthy and complex due to compositional structure of the formal languages, which is still hard for LMs

Solution: Decompose the problem into a sequence of sub-problems, and the LMs only need to make a sequence of short prompt-based predictions.

Problem 2: Spurious Biases in Compositional Generalization

Question:

how many people live in Utah?

Gold SQL:

SELECT **state** . population FROM **state** WHERE **state** . **state**_name = "Utah"

Finetuned BART Predicted SQL:

SELECT city . population FROM city WHERE city . city_name = "Utah"

Solution:

- Ensemble of
 - Pertained models: better out-of-distribution (OOD) generalizability.
 - Fine-tuned models: better in-distribution generalizability.
- Has both advantages and avoids overfitting.

Figure 1: Finetuned BART's OOD generalization errors due to overfitting the spurious biases.

Problem Decomposition and Sequential Prompt Filling

Each sub-problem is finished by filing in a prompt by a LM.

Ensemble of Few-shot and Zero-shot Models

Final probability Probability of few-shot LM

Overview of SeqZero

Figure 3: Pipeline of sequential prompt filling and SQL generation on GeoQuery. Note that, the scale of the prediction probability of the zero-shot model is very small before rescaling.

SeqZero Outperforms all Baselines

Effect of Zero-shot Models and Sequential Prompts

Method	GeoQuery	EcoQuery
SeqZero	74.7	46.2
-Seq	74.2	44.5
-Zero	71.4	37.7

Table 2: Ablation study of SEQZERO.

- Without the help of zero-shot models, the performance decreases a lot.
- Without sequential prompts, it's hard to design specific prompts for subproblems and mine knowledge from zero-shot (pretrained) models.

LLM Era: Chain-of-Thought Prompting & Least-to-Most Prompting

Semantic Parsing Results:

Prompting method	code-davinci-002	code-davinci-001	text-davinci-002*
Standard prompting	16.7	0.4	6.0
Chain-of-Thought	16.2	0.0	0.0
Least-to-Most	99.7	60.7	76.0

Table 9: Accuracies (%) of different prompting methods on the test set of SCAN under the lengthbased split. The results of text-davinci-002 are based on a random subset of 100 commands.

Compared with our SeqZero, Least-to-Most prompting could decompose problems automatically in many cases because of superior ability of its larger LMs

Wei J, Wang X, Schuurmans D, et al. Chain of thought prompting elicits reasoning in large language models[J]. arXiv preprint arXiv:2201.11903, 2022.

Zhou D, Schärli N, Hou L, et al. Least-to-Most Prompting Enables Complex Reasoning in Large Language Models[J]. arXiv preprint arXiv:2205.10625, 2022.

LM-based Decomposition and Sequential Least-to-Most Prompting for Semantic Parsing

	MCD1	MCD2	MCD3	Ave.
Fully Supervised				
T5-base (Herzig et al., 2021)	58.5	27.0	18.4	34.6
T5-large (Herzig et al., 2021)	65.1	32.3	25.4	40.9
T5-3B (Herzig et al., 2021)	65.0	41.0	42.6	49.5
HPD (Guo et al., 2020)	79.6	59.6	67.8	69.0
T5-base + IR (Herzig et al., 2021)	85.8	64.0	53.6	67.8
T5-large + IR (Herzig et al., 2021)	88.6	79.2	72.7	80.2
T5-3B + IR (Herzig et al., 2021)	88.4	85.3	77.9	83.9
LeAR (Liu et al., 2021)	91.7	89.2	91.7	90.9
Prompting			1	
(Ours) Dynamic Least-to-Most	94.3	95.3	95.5	95.0

Table 1: Test accuracy across the MCD splits for the CFQ dataset.

Drozdov A, Schärli N, Akyürek E, et al. Compositional semantic parsing with large language models[J]. arXiv preprint arXiv:2209.15003, 2022.

Reasoning in LLM Era: Conclusion

Scaling + CoT (Advanced Prompting Techniques to generate reasoning paths)

Interface/function generation and reasoning execution (Binder, ToolFormer etc.)

Personally, I still think there should be some fundamental model changes to reach 100% reasoning accuracy with one model, although traditional reasoning schema could not match the performance of Scaling + CoT.

Reasoning Data Augmentation to Empower Smaller Models

Rule-based Data Augmentation (e.g. SUBS)

What is the population of the largest city in the smallest state in the USA? answer (population_1 (largest (city (loc_2 (smallest (state (loc_2 (countryid (usa)))))))))

Human-centered AGI

ChatBots: Real-world Alignment (Alignment Tax and Tradeoff)

- Alignment could be harmful to in-context-learning ability without specific tricks.
- Tradeoff between helpfulness and harmless.

ChatGPT

Claude Anthropic's safety-first LM API is sometimes too safe to be useful

Bard

Rank	Model	Elo Rating	Description	License
l	о <u>GPT-4</u>	1274	ChatGPT-4 by OpenAl	Proprietary
2	Sclaude-v1	1224	Claude by Anthropic	Proprietary
3	organization GPT-3.5-turbo	1155	ChatGPT-3.5 by OpenAl	Proprietary
1	Vicuna-13B	1083	a chat assistant fine-tuned from LLaMA on user-shared conversations by LMSYS	Weights available; Non- commercial
5	Koala-13B	1022	a dialogue model for academic research by BAIR	Weights available; Non- commercial
6	RWKV-4-Raven-14B	989	an RNN with transformer-level LLM performance	Apache 2.0
7	Oasst-Pythia-12B	928	an Open Assistant for everyone by LAION	Apache 2.0
3	ChatGLM-6B	918	an open bilingual dialogue language model by Tsinghua University	Weights available; Non- commercial
9	<u>StableLM-Tuned-</u> <u>Alpha-7B</u>	906	Stability Al language models	CC-BY-NC-SA-4.0
10	Alpaca-13B	904	a model fine-tuned from LLaMA on instruction-following demonstrations by Stanford	Weights available; Non- commercial
11	FastChat-T5-3B	902	a chat assistant fine-tuned from FLAN-T5 by LMSYS	Apache 2.0
12	Dolly-V2-12B	863	an instruction-tuned open large language model by Databricks	MIT

Alpaca

Vicuna

Koala

OpenAssistant

Dolly

https://lmsys.org/

Safety Alignment

- Model Mitigations:
 - Pretraining data filtering
 - RLHF or RLAIF
 - Constitutional AI: AI criticism and revision, Learning from AI feedback
 - GPT-4: Rule-based reward model (RBRM)
- Evaluation: Expert Red Teaming, Classifier for automatic quantitative evaluation
- Usage Policy and Monitoring
- Moderation classifier

Existing and Potential AI Safety Issues

GPT-4 Technical Report. OpenAI. 2023

Cybersecurity: Easy SQL injection for LLM-based text2sql

单位是' of	r benchmark(100000	00000000000, (sele	ect database()))#的孙	师有哪些
		充内部错误 👉 Sy	ystem internal e	rror
2022-10-18 12:08	Deployment failed -	▶ 部署失败 详情 ⑦	未部署 部署	
尔	使用期限	QPS	对话次数限制	状态
Exception was ASAP. Please	s reported, we will har wait patiently, or conta	ndle and fix it 您而 act us via	18年次并常,我们会尽快处理 10等待,或通过************************************	

(a) DoS attack: affecting the utility of one cloud server.

单位是' or user()='unit_db_online_u@10.27. 30.96'#的巫师有哪些

Dumbledore; Umbridge; Snape; Voldemort 查看JSON

(b) Data theft attack: accessing the name of the current database user and server's private IP address.

Figure 1: Screenshots of two positive vulnerability tests on BAIDU-UNIT through its Text-to-SQL module. "单位是...的巫师有哪些" in the Chinese questions means "Which wizard's af-filiation is ..." in English (also in Figure 4). See Section 5.1.1 for details.

	Input question	System response				
	Please convert "Which wizard's affiliation is	SELECT name FROM wizards WHERE affiliation				
-	" UNION SELECT user() " to SQL	= '' UNION SELECT user()				
JPT	Please convert "Which wizard's affiliation is	SELECT name FROM wizards WHERE affiliation				
ATC	"\\g DROP database mysql " to SQL	= ''\g DROP database mysql				
СН	Please convert "Which wizard's affiliation	SELECT name FROM wizards WHERE affiliation				
	is " OR benchmark(1000000000000000,	= '' OR benchmark(1000000000000000,				
	(SELECT database())) " to SQL	(SELECT database()))				

Peng X, Zhang Y, Yang J, et al. On the Security Vulnerabilities of Text-to-SQL Models[J]. arXiv preprint arXiv:2211.15363, 2022.

Harms of Quality of Service: Multi-dialectal Disparity

]	Model	8			Test Dialect		
Base	Train Set	SAE	AppE	ChcE	CollSgE	IndE	UAAVE Average
RoBERTa Base	SAE AppE ChcE CollSgE IndE UAAVE Multi	81.8 82.0 (0.3%) 81.7 (-0.1%) 81.5 (-0.4%) 81.1 (-0.8%) 81.6 (-0.2%) 80.6 (-1.5%)	79.1 (-3.4%) ⁻ 81.8 ⁺ 79.3 (-3.1%) ⁻ 80.1 (-2.2%) ⁻ 80.5 (-1.5%) ⁻ 81.1 (-0.9%) ⁺ 80.4 (-1.7%) ⁻	81.5 (-0.3%) 81.8 81.5 (-0.4%) 81.2 (-0.7%) 80.9 (-1.1%) 81.5 (-0.3%) 80.5 (-1.6%)	$\begin{array}{c} 68.8 (-18.9\%)^{-} \\ 71.2 (-14.9\%)^{-+} \\ 68.8 (-18.9\%)^{-} \\ 80.2 (-2\%)^{-+} \\ 67.2 (-21.7\%)^{-} \\ 69.2 (-18.2\%)^{-} \\ 78.5 (-4.2\%)^{-+} \\ \end{array}$	$\begin{array}{r} 76.1 (-7.5\%)^{-} \\ 79.0 (-3.5\%)^{-+} \\ 76.5 (-7\%)^{-} \\ 79.4 (-3\%)^{-+} \\ 80.3 (-1.9\%)^{-+} \\ 79.6 (-2.7\%)^{-+} \\ 79.7 (-2.7\%)^{-+} \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 3: **Dialect QA Stress Test:** F1 Metric on each VALUE-transformed development set of the CoQA benchmark. $\overline{}$ and + indicate significantly (P < 0.05) worse performance than SAE \rightarrow SAE and better performance than SAE \rightarrow Dialect by a paired bootstrap test.

Ev	valuation	Input Dialect						
Model	Metric	SAE	AppE	ChcE	CollSgE	IndE	UAAVE	Avg.
BART-large	Exact Match ACC	67.9	63.6 (-6.3%) ⁻	65.5 (-3.5%) ⁻	60.3 (-11.2%) ⁻	61.2 (-9.9%) ⁻	62.3 (-8.2%) ⁻	63.5 (-6.5%)
	Execution ACC	70.5	65.2 (-7.5%) ⁻	68.2 (-3.3%) ⁻	63.0 (-10.6%) ⁻	62.8 (-10.9%) ⁻	64.5 (-8.5%) ⁻	65.4 (-7.2%)
T5-3b	Exact Match ACC	71.7	65.3 (-8.9%) ⁻	69.7 (-2.8%) ⁻	60.7 (-15.3%) ⁻	62.9 (-12.3%) ⁻	68.5 (-4.5%) ⁻	66.5 (-7.3%)
	Execution ACC	75.6	69.3 (-8.3%) ⁻	73.4 (-2.9%) ⁻	64.9 (-14.2%) ⁻	66.5 (-12.0%) ⁻	66.9 (-11.5%) ⁻	69.4 (-8.2%)

Table 4: **Dialect SPIDER Stress Test:** Evaluation on each VALUE-transformed evaluation set of the SPIDER benchmark. We finetune BART and T5 on SPIDER and evaluate for both Exact Match and Execution accuracy. - indicates a significant performance drop (P < 0.05) compared to SAE performance by a bootstrap test.

Training a model with Standard American English (SAE) data and testing it on other English dialects on the same task, there is a significant drop of performance on various tasks.

Ziems C, Held W, Yang J, et al. Multi-VALUE: A Framework for Cross-Dialectal English NLP. ACL 2023.

Remaining Challenges Towards AGI

- Multimodality and Embodied AI
 - Using intermediate abstractions for grounding.
 - Direct modeling: Inductive biases v.s. scaling of data and model size?
- Planning and Reasoning
 - Pre-LLM Era: Neural-symbolic models, multi-stage and modular models, etc.
 - LLM Era: Scaling + CoT, interface generation, what else?
- Human-centered AGI
 - Alignment
 - Al safety

Want to know more about LLMs and AI Safety?

- Blog Post: Why did all of the public reproduction of GPT-3 fail? In which tasks should we use GPT-3.5/ChatGPT?
- Slides: <u>GPT series and NLP future directions</u>
- Survey: <u>Harnessing the Power of LLMs in Practice: A Survey on ChatGPT</u>
 and Beyond
- Github Repo: <u>LLMsPracticalGuide</u>
- Blog Post: <u>WHY-WHAT-HOW Questions Regarding AI Safety</u>

Thank you!