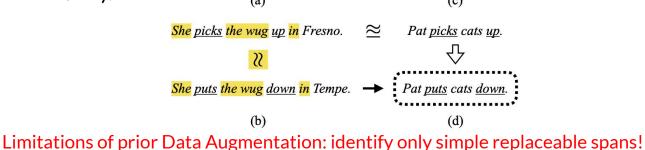


SUBS: Subtree Substitution for Compositional Semantic Parsing

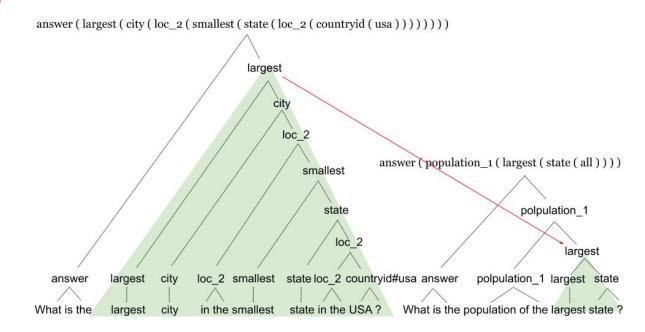
Jingfeng Yang, Le Zhang, Diyi Yang

Compositional Genarlization in Semantic Parsing

Training Example 1: Natural: What is the largest city in the smallest state in the USA ? Formal (FunQL): answer (largest (city (loc_2 (smallest (state (loc_2 (countryid (usa))))))))


Training Example 2: Natural: What is the population of the largest state ? Formal (FunQL): answer (population_1 (largest (state (all))))

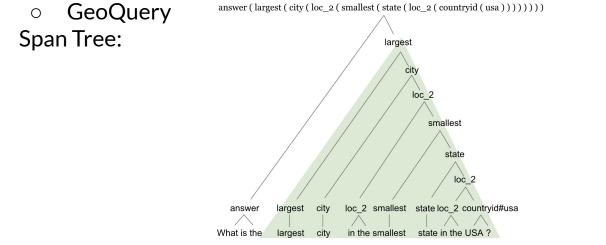
Test Example:


Natural: What is the population of the largest city in the smallest state in the USA? *Formal (FunQL):* answer (population_1 (largest (city (loc_2 (smallest (state (loc_2 (countryid (usa))))))))

Prior Work for Compositional Semantic Parsing

- Model Biases: Span-based Semantic Parsing (Herzig et al., 2021), Neural-Symbolic Stack Machines (Chen et al., 2020), Neural Module Networks (Gupta et al., 2019) etc.
- Data Augmentation and then Seq2seq Model:
 - Synchronous Context-Free Grammar (SCFG) (Jia et al., 2016).
 - Good-Enough Compositional Data Augmentation (GECA) (Andreas et al., 2019):
 (a)

Subtree Substitution (SUBS) Data Augmentation



Subtree Substitution Result:

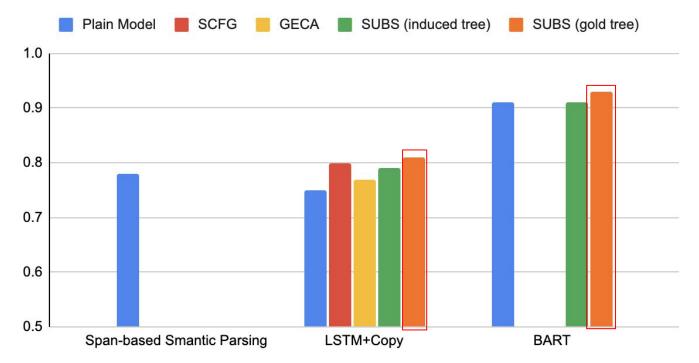
What is the population of the largest city in the smallest state in the USA? answer (population_1 (largest (city (loc_2 (smallest (state (loc_2 (countryid (usa)))))))))

Dataset and Tree Source

- Dataset:
 - SCAN ("turn around left" -> "LTURN LTURN LTURN LTURN")

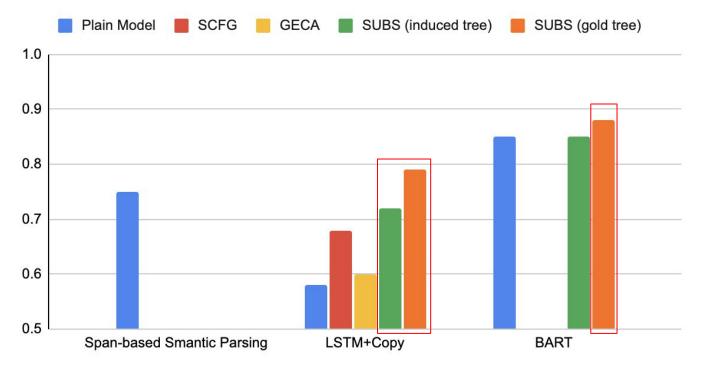
- Induced by Span-based Semantic Parsing (Herzig et al., 2021)
- Semi-automatically annotated gold trees which requires only manually designed domain-specific lexicon and rules (Herzig et al., 2021).

Results - SCAN

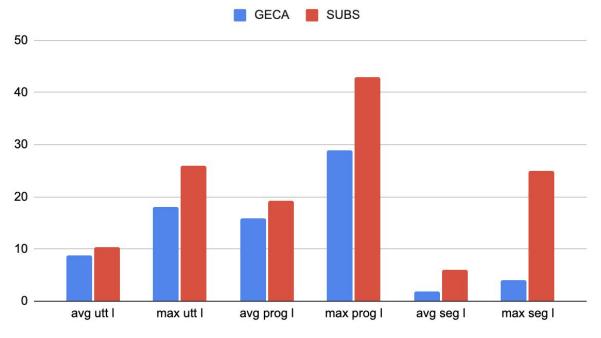

Better performance and faster convergence on the diagnostic dataset.

	RIGHT	AROUNDRIGHT
LSTM	0.00	1.00 (2800 updates)
LSTM + SUBS	1.00	1.00 (2800 updates) 1.00 (800 updates)

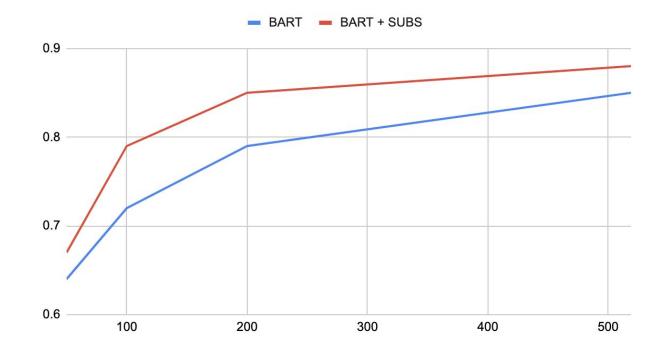
Table 1: Accuracy of diagnostic experiments on SCAN.


Results - GeoQuery i.i.d. Split

Data augmentation boost the performance, especially in LSTM based models.


Results - GeoQuery Compositional Split

SUBS data augmentation is better than others for compositional generalization!


Analysis of Augmented Data

Compared with GECA, SUBS can identify and exchange much more complex structures, and produce more complex utterance and program pairs.

Few-shot Settings

The improvement of SUBS is even larger in the few-shot setting!

SUBS: Subtree Substitution (for Compositional Semantic Parsing)

• Takeaways:

- Subtree Substitution as a Compositional data augmentation method can help compositional generalization in semantic parsing.
- Subtree Substitution can identify more complex structures as exchangeable elements, compared with other augmentation methods.
- Authors:
 - Jingfeng Yang
 - Le Zhang
 - Diyi Yang
- Github:
 - https://github.com/GT-SALT/SUBS