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Compositional Genarlization in Semantic Parsing

Semantic Parsing: Natural Language utterance -> Formal Language utterance (e.g. SQL Query)

Training Example 1:
Natural: How many people live in Chicago ?
Formal (SQL): SELECT city.population FROM city WHERE city.city_name = “Chicago”

Training Example 2:
Natural: Give me the state that borders Utah .
Formal (SQL): SELECT border_info.border FROM border_info WHERE boder_info.state_ name = “Utah”

Test Example:
Natural: How many people live in Utah ?
Formal (FunQL): SELECT state.population FROM state WHERE state.state_ name = “Utah”

Examples are from GeoQuery dataset.



Prior Work: Semantic Parsing via Paraphrasing (SPP) and LMs

e Schucheretal, 2021, Shinetal.,, 2021

When's my coffee with Megan? What time am I brewing coffee with Megan and Megan and Megan?
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Problem 1: Lengthy and Complex Output

The canonical utterance is lengthy and complex due to compositional structure of the formal
languages, which is still hard for LMs

Solution: Decompose the problem into a sequence of sub-problems, and the LMs only need
to make a sequence of short prompt-based predictions.



Problem 2: Spurious Biases in Compositional Generalization

Question:
how many people live in Utah ?

Gold SQL:

SELECT state . population FROM state
WHERE state . state_name = "Utah”

Finetuned BART Predicted SQL:

SELECT city . population FROM city
WHERE city . city_name = "Utah"

Solution:

e Ensemble of
o Pertained models: better
out-of-distribution (OOD)
generalizability.
o Fine-tuned models: better
in-distribution generalizability.
e Has both advantages and avoids
overfitting.

Figure 1: Finetuned BART’s OOD generalization er-

rors due to overfitting the spurious biases.



Problem Decomposition and Sequential Prompt Filling
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Each sub-problem is finished by filing in a prompt by a LM.



Ensemble of Few-shot and Zero-shot Models

Constrained rescaling of zero-shot models: Probability of zero-shot LM
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Overview of SegZero
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Figure 3: Pipeline of sequential prompt filling and SQL generation on GeoQuery. Note that, the scale of the
prediction probability of the zero-shot model is very small before rescaling.



Dataset and Evaluation

e Dataset:
o GeoQuery Compositional Split
o EcommerceQuery Compositional Split
Test Example:

Natural: petrol trimmer over 100 dollar
Formal (SQL): SELECT * FROM ASINs WHERE Maching Algorithm(“petrol trimmer”) == True and Price > 100

m Intraining set, there are “Price <” and “Size >” combinations, but no
“Price >" combination.

e Evaluation Metric:
o Exact Match (Whole SQL utterance accuracy)



SeqgZero Outperforms all Baselines
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Effect of Zero-shot Models and Sequential Prompts

Method  GeoQuery EcoQuery

SEQZERO 74.7 46.2
—SEQ 74.2 44.5
—ZERO 71.4 37.7

Table 2: Ablation study of SEQZERO.

Without the help of zero-shot models, the performance decreases a lot.

Without sequential prompts, it’s hard to design specific prompts for
subproblems and mine knowledge from zero-shot (pretrained) models.
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Analysis of Sequential Prompt Based Models
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Ensemble of Zero-shot model in SeqZero boosts performance on the “FROM” clause, thus
significantly reduces the error propagation, leading to better performance on all clauses.
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Zero-shot, Few-shot models, and Their Ensemble

Zero-shot models requires prefix constrained decoding.
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Ensemble of Zero-shot (Pretrained) and Few-shot (Finetuned) models has better
performance because it achieves much better compositionally OOD generalization
while maintaining in-distribution generalizability.



Few-shot Settings
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Before certain point, SeqZero has larger improvement with more examples.
Increasing training examples with the same templates enhances overfitting of
seg2seq models, leading to larger gap between SeqZero and others.
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SeqgZero

e Takeaways:
o Problem decomposition and sequential prompts enables flexible prompt
designing.

o Ensemble of zero-shot (pretrained) and few-shot (finetuned) models
achieves better compositional OOD generalizability, while maintaining
in-distribution generalizability.

o Constrained rescaling is important for ensemble of zero-shot and
few-shot models to work in the generation task.

e Authors:
o Jingfeng Yang, Haoming Jiang, Qingyu Yin, Danqging Zhang, Bing Yin, Diyi Yang
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